

Worksheet 10 Memorandum: The Fundamental Counting Principle

Grade 12 Mathematics

1.	a)	permutation	b)	combination	c)	permutation
	d)	permutation	e)	combination		
2.	a)	2 pants x 3 shirts x 4 ties = 24 different outfits.				
	b)	P (black pants and white shirt and red tie) = $\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}$				
		$=\frac{1}{24}$				
	c)	$P(\text{black shirt}) = \frac{1}{3}$				
	d)	4!				
		= 24 different arrangements				
	e)	P(black, blue, grey and red) = $\frac{1}{24}$				
	f)	$\frac{(4+4-1)!}{(4-1)! \times 4!}$				
		= 35 different tie arrangements				
3.	a)	$\frac{(40+4-1)!}{(40-1)!\times 4!}$	n = 40	0 and r = 4		
	= 123 410 possible combinations					

b) P (all marbles evenly distributed) = $\frac{1}{123 \, 410}$ (because it is one possible combination out of 123 410 combinations)

4. PRESTIDIGITATION

a) 16!
= 2.09 x 10¹³
b)
$$16P6 = \frac{16!}{6! \times (16-6)!}$$

= 5 765 760
c) 3 T's; 4 I's repeated.
 $\therefore 5 765 760 \div (3! \times 4!)$
= 40 040 words with no repeats
d) 16C5
= 4 368
e) 1 possible combination out of 4 368 possible 6 letter words.
 $\therefore P (word = tastier) = \frac{1}{4 368}$

5.

a)

= 5 040 possible seating arrangments

b) 12!

7!

= 479 001 600 possible seating arrangments

- c) 12C4
 - = 495 possible groups
- d) 12P3

= 1 320 possible ways for the prizes to be handed out.

Proud distributor of: SHARP

e) 12C3

= 220

6. PERPENDICULAR

a) 13!

SEART

= 6 227 020 800 possible arrangements

b) 2 Ps, 2 E's, 2 R's;

∴ 2! x 2! x 2!

= 8 possible repeats of each arrangement from above.

- c) unique ways: 6 227 020 800 ÷ 8 = 778 377 600.
- d) 13C5

= 1 287

e) $\frac{(13+5-1)!}{(13-1)!\times 4!}$

= 30 940

7. a) $\frac{(150+3-1)!}{(150-1)! \times 3!}$ n = 150 voters r = 3 political parties.

On the calculator this will give you an error. So you need to simplify first:

$$= \frac{152!}{149! \times 3!}$$
$$= \frac{152 \times 151 \times 150 \times 149!}{149! \times 3!}$$
$$= \frac{152 \times 151 \times 150}{3!}$$

= 573 800 possible ways for the voters to vote.

b) i)
$$\frac{(10+3-1)!}{(10-1)!\times 3!}$$

= 220 different ways for the voters to vote.

Proud distributor of: SHARP

P (all vote ANC) = 1 way out of 220

$$=\frac{1}{220}$$

ii) P (3 vote for EFF) =
$$\frac{1}{220}$$

iii) P (7 vote for DA) = $\frac{1}{220}$

8. a) $4^{15} = 1\,073\,741\,824$

SEARTE

b) P (guess all 20 correctly) = $\frac{1}{1073741824}$

(one possible permutation out of more than 1 billion options).

9. a) 5+3+4+7+6=25 plants

 $25! = 1.551121 \times 10^{25}$ possible plant combinations

- b) 5! = 120
- c) 3 + 4 + 7 = 14 plants

14! = 8.717829 x 10¹⁰

- d) 25C5 = 53 130
- e) 25P5 = 6 375 600

10. a) $5 \times 7 \times 3 = 105$ ways to pick the three books

b) 5! = 120 arrangements of the David Baldacci Books

7! = 5 040 arrangements of the Danielle Steel books

3! = 6 arrangements of the John Grisham books

And 3! = 6 ways for the groups of books to be arranged.

 \therefore 120 + 5 040 + 6 + 6 = 5 172 ways to arrange the books according to author

c) 15C5 = 3 003 different ways to choose 5 books.

d) P (choose all 5 David Baldacci books) = $\frac{1}{3003}$

11. a) 16C2 = 120

SEARTEC

- b) 16C4 = 1 820
- c) 16C8 = 12 870

